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<K ABSTRACT , . :
3 § -
iEh It is shown that the span of a collection of multivariate B-splines,

j .
+:
sk := span M(e|x 0,---,x k m) + contains polynomials of total degree < k \
jed
if the index set {j = (3ge°°

ST T T ke
(=)

.'Jk+m)}jeJ has a certain combinatorial

structure, in particular the knots {xv} < Rm can be chosen essentially

arbitrarily. Under mild assumptions on the distribution of the knots, a dual

basis {xj}jeJ

C supp M

for S, is constructed which has local support, i.e.,

+ and the condition number of the B~spline basis is

supp Aj 3

estimated. This leads to good local approximation schemes.

B A v

AMS (MOS) Subject Classification: 41A15, 41A63

Multivariate, B-splines, spline functions, dual basis,
condition number

Key Words:

Work Unit No. 3 - Numerical Analysis and Computer Science

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. ;
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062,




SIGNIFICANCE AND EXPLANATION

Spline approximation provides good approximation methods in one

variable. This is to a great deal due to the properties of the B-spline

basis. Recently, multivariate B-splines M(-lxo,'oo,xn) have been defined

and their basic recurrence relations derived. However, there was no

LRty 2T L NDp e

satisfactory way to choose for a given set of knots {x} <& a span of B-

wovinen: Wi kst o

splines that contains polynomials; this property is essential for good

approximation properties.

In this report we give a sufficient condition in terms of the index set
b 3
. : . 0 k+m
{J = (JO'.“'Jk-i-m)}jeJ for Sk = §£;n M('lx s*0°,x
locally polynomials of total degree < k.

) to contain

Since the knots may be chosen

almost arbitrarily, the resulting space of multivariate splines Sy has the

local flexibility familar from the univariate theory. We show that under mild

assumptions on the distribution of the knots the Lp-norm of a spline s € S,

zp-norm of its normalized B-spline coefficients. As an

is equivalent to the

application, we indicate how local approximation schemes can be constructed.

ot i R

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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MULTIVARIATE SPLINES

Klaus HGllig

0. Introduction

: - The purpose of this report is to introduce a class of multivariate non
tensor product spline functions and study its basic properties.b'*ﬁe basis for
our approach are recent results of C. A. Micchelli and W. Dahmen (8-12, 21,
22] on multivariate B-splines M(-Ixo,--‘,xn) introduced by C. de Boor in

= span M('|xjo,-~°,xjn) ‘

jed
where the index set J has a certain combinatorial structure and the knots

[3]. We consider a space of spline functions Sk

xv e g™ may be chosen almost arbitrarily. It is shown that 8, contains
polynomials of total degree k = n-m which is the basis for good approxima-
tion properties. Under mild assumptions on the distribution of the knots we
construct a dual basis ., j € J, for S, ;ith local support, i.e.

3

3 g ° Using extensions of the functionals Aj to Lp the

condition number of the B-spline basis is estimated which turns out to be

supp A, € supp M
essentially independent of the distribution of the knots. As an application
we obtain the basic error estimate for local approximation schemes.

Since the spaces S, have the local flexibility familiar from the
univariate theory one might expect applications to finite element methods,

amoothing of data and surface fitting.

41 B i Bfiaiel ST I v i s e Gan &
e S TV e - . ~

Sponsored by the United States Army under Contract hNo. DAAG29-80-C-uU04l. 7This
material is based upon work supported by the National Science Foundation under
Grant o. MCS-7927062.




A e

on ou Rt T -

1. B-Splines
The geometric interpretation of the univariate B-spline by H. B. Curry and I. J.

Schoenberg [7] gave rise to the following generalization.

Let xo."',xn be any points in ®®, n » m , which span a

pDefinition 1. C. deBoor [3].

proper convex set and choose any simplex u((xo,;o),--O,(xn,;n)) with vertices
v

(xv,;v) € R® . The B=spline M(°|x0,0°',xn):lP + R corresponding to the "knots" x is
defined by
0 n VOl _ (xeR Tl(x,X) € at(x0,%0) 000, (™51}
(1) M(x]x ,vee,x ) = — o0 g,
volnc((x X )00, (x ,x))

fo, if a=g

where for n=m volo(A) = .
1 otherwise
n
Denote by An - {(Ao,'°',kn)l Z kv =1, Av > 0, v=0,°e¢,n} the standard n-

v=0
dimensional simplex. A simple calculation shows (22, p. 3,4] that for f ¢ c(R™)
n
at [ £ ] A e =[xl eoe xM £ ax

(2)
An v=0 ‘p

a relation used by C. A. Micchelli to define the multivariate B-splines [21]. Equation (2)

defines M even for n < m as a positive measure supported in the convex hull of the

points xo,---,xn. From (2) the Fourier transform of M can be computed via the Hermite

Genocchi formula for divided differences (23, p. 16]

(¥
[to.---,tn]f-] RN ST S

(3)
A v=0
n

Applying Parseval's identity [£§ = [fg, h(y) = [ hix)e 3*¥ax , to the equation (2) we

have
) ﬁ(x|x°,°--,xn)g(x)dx =/ M(xlxo,---,xn)g(x)dx -
o .
2=
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yar, Qo= [ emp( [ A (=ixx'))gtx)dx dA ecedd
" An .m v=0

nl f [-ixxo,-",-ixxn]tet gl{x)dx

which implies that the Fourier transform of the B-spline is given by [21]
(4) ﬁ(xlxo,-'~,xn) = ni [-ixxo,-",-ixxn]t et .
Expanding the divided difference on the right hand side of (4) we obtain the Fourier

transform of W. Dahmen's truncated power representation of multivariate B-gplines (8]

n v n

(5) Ax(x® 000, ™ = nt J & 0 - 7.
v=0 u=0
u#v

Identity (5) corresponds to the usually used definition of the univariate B-spline (1]

2 n-1 n -1
(6) M(xlt,,*eo,t ) = n ) (e 0 T (r -t

] u=0

u#v
n=-1
=n [t°,~ 'tn]t (t-x)+ .

Using the recurrence relation for divided differences
(7) (tv'tu)(tol"'ltn] = [tol...Itu_1ltu+1l...ltn] - [t l...ltv_1ltv+1l...ltn]

we can derive from (%, a formula for the directional derivative of M . We set

t

t = -ixxv, apply (7) to the function e and take the inverse Fourier trangform. It

v
follows that

0 n
D, u M(x|x ,*¢°,x ) =

x =X

(8)

-1 v+t -1 _y+t
n[M(X’xol"'l"v va "':xn) - M(xlxol“‘lxu pxu 0""xn)]
where Dz := 2z ¢« V. This generalizes to
n v n
Theorem 1 [8, 21, 22]. If y= Z kvx y 2 Av = 0 , then we have
v=(Q v=Q
[¢] n 2 0 V=1 v+l n
{(9) Dy M{x]|x ,***,x ) = n 2 Av M{x|x ,v°,x X 000 ,x )
v=0

where this identity should be interpreted in the sense of distributions if some of tie H-

splines are supported on sets of zero measure.

“3=




A repeated application >f (9) shows that the distributional derivatives

DuH(-lxo,--O,xn), la] = n~m+1 , being linear combinations of the B-splines
3 i i
M(e[x 1,“°,x m), are supported in convex subsets of hyperplanes. Hence M agrees with

a polynomial of total degree <€ n-m on every subset of ®® not cut by one of the convex
i i

sets spanned by x 1,---,x . 0¢€ 11 < se0 im < n (21, 22]. The global smoothness
of M depends on the geometric configuration of the points A 7 every subset of £
points of {xo,-~°,xn) forms a proper convex set it follows again from (9) that

DM e L, , la] = n=+1 . Therefore,

(10) Mo 130,000 ,6™) ¢ W R < D)

-
Perhaps the most striking identity for multivariate B-splines is the recurrence relation,
discovered by C. A. Micchelili (21] and also proved by W. Dahmen (8] under more restrictive

assumptions. See also (16] for a proof via Fourier analysis.

Theorem 2 [8,21,22]). Assume that the points xo."°,xn € ln, n>m form a proper convex

set and
n n
X = Z Avxv v Z Av =1,

v=0 v=0

then we have
n

(11) H(x|x°l...lxn) - L 2 A M(x|x°l"°1xv-11xv+’o"'rxn)

L I

if all B-splines occurring in this equation are continuous at x .

Formula (11) expresses M recursively as a convex combination of positive guantities
and thus provides a stable way for computing multivariate B-splines (22]. So far we have

only discussed some basic results on multivariate B-splines and we refer to the literature

[(8-12, 21, 22] for many interesting recent developments.
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2. Some topological preliminaries

We need some basic facts about triangulations [14). Since there seems to he no

? convenient reference for a reader with little background in topology we sketch the proofs.

Let (X,I) denote a collection of nondegenerate closed simplices cl(x) -

i i
aolx o."-.x ™, 1= (10,-°-,im) €elc ZM+1 with vertices x’ ¢ X c ®° . (X,I) is called

a triangulation of a set § < A if Q= U ai(x) and the intersection of two different
i€l

simplices is either empty or a common lower dimensional face. Moreover we assume that

every compact subset of {1 is intersected by finitely many simplices only.

Definition 2, Denote by B1 = mi + pia the inscribed balls with center wi and radius

Py for the simplices °1(X)' We call a triangulation reqular, if there exists a constant

Y such that
(12) diam oi(x) <y By v i1iex.,

Lemma 1. Let (X,I) Dbe a triangulation of an open set Q < K . Then for any finite set

€ > 0 such that (i,I) with %' = x“, v £ J is also

* of vertices {x"}\)CJ € X there is an

a triangulation of § if 1 - xVl <e, ved.

lemma 2, Let (X,I) be a triangulation of a simply connected set (I and assume that a

3 locally finite collection of simplices (X,I) satisfies Q= VU ci(f). Then (X,I) is

ieX

é also a triangulation of Q .

Proof. The mapping f : @ + Q@ defined by

£ix") =~ x¥ ,

floi(x) is affine linear,

is a local homeomorphism which is by assumption surjective. Since ( is simply connected

is bijective and hence (f.!) is a triangulation of

" * the monodromy theorem implies that f
E % » Roughly speaking, the arzument is as follows. Suppose there exist 2ge2, € 2
z 2z such that y = f(zo) - f(z1) and let Cb be the image of a curve joining zo

0 T’




and z,. Denote by C(t,A): (0,112 »+ @ a continuous deformation of Cy = C(+,0) into

the point y , i.e. y = C(+,1). Since we have assumed that only finitely many simplices
;1 intersect a given compact set every point x ¢ § has a neighborhood U, such that

f"U consists of finitely many disjoint sets V goee,V and 4 is a
x x,1 x,9 Vx v
R .

homeomorphism. Hence the inverse of f along each curve CA' Cle,n), f-1(C(°.A)), with

= £7(C(0,1)) is well defined. We shall show that z, = £ e,

initial value =z 1

0
for all 2\ ¢ [0,1) contradicting £-1(C(0,1)) H z,. For a sufficiently fine subdivision

of (0.1]2 into squares R, each of the sets ‘C(Rv) is contained in some neighborhood

U, and the following picture shows that inverting f along adjacent curves leads to the
same value '
r A
-
N rm i X
] )i I .
'R A’i 4\'! '
vy Y R o
‘ it 'L v,
= i Y = A
0 1

£, = £ eyt = £ cann).

The combinatorial product of the sets i= {1°,o--,1m} and (0,e+e¢,k} is defined as
the collection of all ordered subsets of {10,-0-.1m1 x {0,e00,k} with n+1 = m+k+t

distinct elements, i.e.

jot"'ljn
n+1
iak := {(jlr) - ( )5 [(101"'11m} x {ol"'rk)] l
rolooo,r
(13)
(:]\“_1 = j“ and L rv+1) or (jvﬂ - juﬂ and L rv) for v = 0,eee,n}.

Note that (j,r) ¢ idk 1is already uniquely determined by 3 = (jo,---.jn) s0 that we may

drop r when referring to elements of iaAk .

lLesma 3 . Denote by = gle ,*cv,e ), with e = (0,+24+,0), e = (1,0,¢+s,0),0e¢, the
. 0 | 0 1

standard k-dimensional simplex and let (X,I) be a triangulation of 3} c R" . Then the g

simplices
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olix O,e_ ), o0, (x "o 1), n 1= mek,
) 4 )4
0 n \
(14) ;

(3,r) € IAk = U 1Ak
iel

form a triangulation of  x Ak .

Proof. Consider the intersection of two simplices V = g o nag 1+ 9 1=

b 3°

p
3® 3
ol (x o,e o),---,(x n,e p)) , and the intersection of their projections onto R*

r r
0 n

Wa=g ng 1° Since (X,I) is a triangulation we have W = a(yo,-oo.ys)
i i
where y_,e¢+s,y are the common vertices of ¢ ., o and clearly V= W x Ak nve.
0 8 10 11

Denote by (y ,& ) v=0,eee,8, p=~0,00¢,8", ,=0,1, the vertices of o _, o
\Y [} v 0 1
Cvu b| ]

contained in the set W x Ak and let

P
P or e
*) X = AL (y.e deo . p=0,1,
w0 =0 ¥ TV P 3°
v
[+
IRER
vu V¥

be a point in V . Since the projection of x onto RK° is a unique convex combination of

yo,...,ys we have the additional equations

2 2!
v 0 v 1
(**) N 2 by - 2 A ’ v =0,00e,58,
vu Vi
u=0 p=0

p P P [
By the definition of the index set j we have tvu < tv(u+1)’ tvu < t(v+1)u' « Using this

fact we can successively solve the equations (*), (**) for x;u s V= g,%es,0, and obtain

EEAEESESS S e o ey -~




i st e 8 s e 3 ol

0 1
xw-xw, iff e, e,
t t
Vi vy
Xp =0 otherwise.
vy
This implies that V is the simplex spanned by the common vertices of ¢ 0’
b/
A simple calculation shows that vol °j - ‘-:% vol o J € 1Ak . Since
m+k
oy € o, x & and ¥ isk ("y ) this implies U oy = 0 x A -
Jeiak
-8~

g

3

1




3. Splines as linear combinations of B-splines

Denote by Py the polynomials of total degree <k , i.e.

m
p, = {fIqu =0, |lal] = k+1}, where o = (a,,ss+,a ), lal = Z a , %=
k 1 m w1 v

We call Sk a space of splines of total degree k defined on a set { < g
(a) S, 1is the linear span of a collection of B-splines and

(B} Pk(ﬂ) < sklﬂ

Moreover we shall assume that
(c) every compact subset of  is intersected by the supports of finitely many
B-splines only.
In the univariate c#.e we may associate with any increasing sequence of knots {tv}'

t a space of splines

<
v otk

(15) Sk = gpan M(-Itv,---,tv+k+1).
v K

In geveral variables any triangulation ((x.f),z) of a product [ x 2c Rm x R,
vol 4 < ®, corresponds by Definition 1 to a family of B=-gplines which forms a partition

of unity over § [3}, i.e.

P ] iO ~10 j'n ~in i0 in
1 3 (vol ) Z vol g{(x ,%x "),eee,(x ,x )) M(x|x ,e0e,x ),

i€1
X € 2, n=mk,
1 i

and it was shown in [9] that for Q x { = [0,1]n P, < span M(+|x 0:"',X
iex

)

condition (B) is satisfied.

To require the existence of an associated triangulation is, however, too restrictive
and not quite satisfactory, since the B-splines do only depend on the knots xY e X ¢ Rm .
As in the univariate case, one would like to associate with any distribution of knots a
corresponding space of splines. This can be accomplished by a multivariate analogon of the

process of "pulling apart” knots which we shall now describe.




Definition 3. Let (X,I), X = (xv)vsz . be a triangulation of ®* and

v m
€R,

\Y
X= {xu}viz,u-0.°°',k ’ Xu

a collection of points, not necessarily related to (X,I). We define the space of
splines of total degree k with respect to the index sst I and the knots X by (c.f.
(13), (4))
17)

= gpan M_{(+|X)

s
keI yerax I

b

where Mj(-IX) = M(-[xro,---,xrn), n=mék « In addition we assume that condition (C) is
0 n

gatisfied,

The rest of this chapter is devoted to the justification of this Definition, i.e. to
prove (B}, To simplify notation we shall drop most of the subscripts in the sequel, e.g.

Sy = sk,x,I' uj = nj(-lx), o, = °1(X)' etc.

Lemma 4. If we make for the knots X the particular choice x: =x", ve B, u = 0,%00,k,
then sk.x,I coincides with the space of piecewise polynomials of total degree k with

respect to the triangulation (X,I), i.e.

(18) Se,x,1 = Px,x,1 " {flfloi(x) €P ., i€ I} .

Proof, For the special choice x: = xv we have
j0 jn
= gpan M(e|x ~,eee,x )

S
kX Iloy ik

and {x o,---,x "} = {x 0,"',x ™ + We could now use the formula for B-splines with

multiple knots [22, p. 16] to complete the proof. But we may also apply (9) to conclude

that the supports of the distributional derivatives DGM, Ja| = k+1, are contained in the

boundary of the simplex oi. This implies span Mj c Pk(oi)' The reverse inclusion is a
je bk

K+

k

m) = dim P, the B-splines

special case of Theorem 3 below. Moreover, since #iAk = ( k

Hj. 3 €4iAk , form a basis for Pk(ci).
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Remark. Lemma 4 shows that we may view the spaces S, as perturbations of piecewise

polynomials cbtained by pulling apart the multiple knots xv € X

v Y
X Oxu, uno'uoo'k.

One may e.g. choose a --O,ak € dm and define x; = xv + au + 4 = 0,°%¢,k, This very

0’
special perturbation corresponds to an affine transformation of the trianqulation (14) and
is only an appropriate choice if the triangulation (X,I) is quasiuniform and one is
interested in a uniform distribution of the knots X .

We have defined the spline spaces S, on R® to avoid a separate discussion of
various types of "boundary" conditions in the sequel. This is no loss of generality since
we include all kinds of finite dimensional spline spaces by simply restricting the domain
of definition. The global smoothness of S, depends on the smoothness of the particular
B-splines (c.f. (10)). But, although the set of knots yielding the highest possible
smoothness S © ck-? is dense, there is no canonical way to choose such knots as in the

univariate case.

Example 1. Let {tv}' t <ty be an increasing sequence of knots. To obtain the

canonical B-spline basis (15) we set (c.f. Definition 3) X = {t(k+1)v}vez ‘
v

y = Ekttpvey ¢ U € B M = 0,000k, which yields

I= {(VIV+1)}\‘€Z r X

v--ov(u+1)o-o(v+1))

OCDOD p see k e P = o'...'k}'

(v,veniak = {(

span M. = span M(* |t Yo

'.Oo’t
- +q] )=
Je(v,u+1)8k I p=0,%ee,k (k+1)v-p (k+1) (v+1)=p

The following example shows that Definition 3 is slightly more general than the usual
univariate definition, since we do not require that a B-spline does only correspond to

adjacent knots.

Example 2. Let X = Z, i.e. x = v, 1 = {(\.v,\:-ﬂ)}wz and consider the knots x; = 2,

x‘ = 2,5, x2

1 o - 1, xf = 0,5 and x: =y for Vv # 1,2 Restricting the domain to the

1=

S
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interval (0,3] we have

sl,x,rlto,sl = gpan{M(*|0,0,2.5), M(+|0,2,2.5), M(*|0.5,2,2.5), M(*|0.5,1,2),

i el e, s

M(¢10.5,1,3), M(]%,3,3)}

which is a space of continuous piecewise linear splines with an unusual basis.

3

i Theorem 3. The spaces Sy y y contain polynomials of total degree k . In particular we
% have for all x,y € R®

1 (19) (™ = T iz M xl®)

] jeIAk

where (c.f. (13), (14), (17))

3 b
(1+x %6 see (1+xMe
r, r r ' r
0 0 n n
b b
kl 0 n
C,(ylX) 1= ¢, — det X see x
3j j nl P L
1 see 1
and €y € {-1,1} is chosen so that
e ede er
r0 n
3 3
k! 0 . n
Cj(X) .-ej 1 det x . X >0 .
1 L] 1

(Recall that xv are the vertices of the trianqulation corresponding to the index set I) .

For the standard univariate B-spline basis formula (19) is known as Marasden's identity
[19]. The basic idea of its multivariate generalization is due to W. Dahmen {9]. For two
variables (19) was proved by T« N. T. Goodman and S. L. Lee [15] under the restrictive
assumption thut the B-splines correspond to a triangulation of I? x Ak' In both cases

there is a more explicit formula for the coefficients Cj(yl!) (cef. Corollaries 1 and

2). Besides the generalization to an arbitrary number of variables we show that identity .

=12~
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1
3
3
3

(19) is valid for any collection of knots as long as we keep the combinatorial structure

determined by the index set 1 .

Remarks. (i) Identity (19) holds for any finite collection of B-splines Mj, jegc

IAk, if we restrict x to the domain R \ U supp Hj .
bl
(ii) Por y =0 , (19) is a generalization of (16) since the coefficients cj 1= C(0]X)

need not to be positive. The coefficients corresponding to the B-splines in Example 2,
®.g., are 1,25, 1, -0.8, -0.4, 1,25, 1. One can show, using Lemma 2, that the

coefficients cj, j €IAk, are positive if and only if the simplices

3 3

(20) 0y(X) = ot(x ve, D, eenn(x e ), 3 €18k,
Q o] n n

form a triangulation of R x Ak .

(iii) Comparing the coefficients of yu in identity (19) we obtain an explicit

representation for the monomials xa, lal < X .,
(21) = 7 c;’(x) M, (x)
Je1ak
where cX(x) = (a) (%7 p%, (v1%) , ol = ; al .
3 lal 3 ly=0 -t ¥

Proof of Theorem 3. Note, that by Definition 1 we may associate with the B-splines Mj

the simplices aj (cef. (17), (20)). First we assume that the collection of simplices

°j' J € IAk, is a small perturbation of the triangulation (14), i.e. 8y x,1 18 close to
78y

Pk,x,I (c.f. (18))., More precisely, for a finite gset J < Z and ¢ > 0 , to be chosen

later, we assume

(*) Ix: -x"l <€, H=0,e00,k, veJ
(*)
(**) x: = x¥ R u=0,e00,k, v¢gJ.

By Lemma 1, ¢ 3j IAk , is a trianqulation for small ¢ (Since R x Ak<2 R is not

j ’
an open gset. Lemma 1 cannot be applied directly. But, we may consider suitable extensions
of the triangulations to R'). Let X be an arbitrary bounded subset of R". Obviously it

is sufficient to prove (19) under the assumption x ¢ K and y small. wWe define the

mapping

ER kY
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T Ik - 2" x lk

TUx,X) = (x,(1 + xy)X) .
Consider the finitely many B~splines nj r J e K] + the supports of which intersect KX

(c.f. the assumption in Definition 3), and let {x:} be the corresponding

usQ,00e ,k, vel
set of knots. For small encugh y the simplices
p)

OT 1= o(T(x oc‘ Yoooe,T(x nl. M), 3¢ 3 ’
) o %o a Tn
form also a triangulacion. Moreover, since T maps the hyperplanes bounding 2 x4 into

k
hyperplanes and leaves projections on ®' fixed we have
(v, a';
jeJ
By Definition 1 and (16) it follows that for ssall y and x ¢ K

Ink x lk = T(K x Ak) .

vol(% ¢ B1x,%) e Tk x 80} = (k)™ (1 ¢ xp)* =

L vol{x ¢ IFI(R.;) co) = I va T M, .
v j€3 3 je3 1
ror lxn - xvl sV €J, small we have sgn c,(ylx) = ggn Cj(x) = 1 which implies
1

vol c: o (ki)™

We now drop the assumption (*). Let Mj' j e 3, be the finitely many B-splines having

c,(yll) and completes the proof under the assumptions (%), (°*%),

at least one of the knots {x'}

w y=0, 000k, v € 3 and consider the equation

/ (1+xv)k;(x)dx-[ ( { cj(ylx)nj(x))o(x)ax.
L JeLok
343
(+)
o L ctyion (%)% (x) &x

‘- jeg 3

where ¢ , ¢ ¢ V is the Fourier transform of a test function with compact support. By (4)
and Parseval's identity, the right hand side is equal to

j0 jn t
nt J_C(yl®) [ {=ix “x,ece,-ix "x}_ e é(x)&x .
jed J (g To *n t

The coefficients Cj(yll) and the divided difference of the exponential function are also

defined for complex values x: € d., and it is easily seen that the right hand
\" m #Je (ke 1)
side of (+) is an entire function of the arguments {xu)u-O.-°‘.k. veg £(C)

The left hand side of (+) is constant with respect to these arguments. Therefore, since by

-1d4=
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the first part of the proof the identity is valid in a real neighborhood of the knots
x’ s+ V€T, it follows alobally by the identity theorem for power series (17]. To
obtain (19) from the identity (+) we note that (;|0 € D} is dense in U with reapect to
the norm Iyl := sup_ (1 + |x|)l|0(x)| for all feW.

The general ::-o follows now easily. Consider an arbitrary perturbation of the
initial knots
x’ + x: , Um0, eee,k
such that any bounded subset K c B® is intersected by the supports of finitely many B~
splines only. Restricting x to X , only finitely many knots are relevant for the
identity (19) and the previous arguments apply.

We now examine in more detail the cuefficients c’(yll). Indicating terms of the form

(1 + x:y) by * 's”", the determinant in their definition has the following structure

p.*t
O sse 0 % ¢ o
.
L]
‘e ceee ¢ X |
0 %
‘e ese @
(22) .
j0 jn
x eoe x, »
r0 n
1 (XX 1
where the position of the nongero entries in the first k rows depands on the index set

- (ro,---,rn). 1t o, + 1 , vm= 1,eee,k, denotes the number of °'s in the v'a row

we have 9000000°k = m . Por small m this leads to considerable simplification.

Corollary 1 [19]. Por any increasing sequence of knots (tv)v(l SR, L we

have

x -1
(23 {y=x)" = (k+1) z (t S Ty 0 Mixlt ,eeet ) .

st

veke+ ) v ke




Corollary 2 [15). Lat be defined on R?. Then we have for all X,y € »
ary 2 8%,x,1

X
(24) (texp)® = ] c, O (1ﬂ;y) M, (x)
jetak ? vai 3

where z; 1= :‘;(x) can be determined by the knots of the B-spline "j and the index

set j . Por details we refer to [15].

Both Corollariss can be obtained from Theorem 3 by direct computation of the
deterainant (22). Note that in (23) we have made the substitution y + -l/y .
Unfortunately, an identity of the form

k

ctylm =c, I (14 2, (D)y)
V=1
is no longer valid in more than two dimensions.

0 (I*y‘-'ys) (1472473) 0 (1]

0 0 0 (4y,=yy) (W y,4y,)
0 1 1

() 0 0

1 ~1 -1

1 1 1

cannot be written in the form
Cll + 24y)(1 + 2,5y)

for some vectors ‘1' 82 € .30




4.

The B-spline basis

The standard univariate B-spline basis (15) has the striking property (c.f. C. de Boor

T Bt

[{1,3])) that the Lp~norn of a spline is equivalent to the zp— norm of its coefficients with

respect to a normalized B-spline basis independently of the sequence of knots. Under mild

eowpnd Vo iea ok

assumptione on the distribution of knots we shall establish this result for the

multivariate spline spaces sk,x,I'

Definition 4. We call X = {x:) a regular perturbation of a triangulation (X,I) if there

exists a constant x and balls ﬂi 1= x, + hia such that for every 1 € I (c.f., (13),

Definition 3)

(25) Q < n supp M

1 jeiax 3
(26) nin-uppnj-ns, Je i'Ak , 4' % §
(27) diam supp H’ < x hi ' j e 18k

Note, that the conditions (25)-(27) are local, i.e. we do not assume any relationship

between hi' hi" 1¢ 41,

The following example shows that assumptions (25)=(27) cannot be essentially weakened.

Consider the following perturbation of the standard triangulation (14) of

Example 4
R x (0,1)

restricted to (0,3) x (0,1)

Among the corresponding B-splines, M(¢]1,2,2.5) oecurs twice, a possibility not excluded

Although the B-splines becoms linearly independent if we move the vertex

by Definition 3.

(2,1) slightly to theleft, the basis is not well conditioned.
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Lemma 5. With the notation of Definitions 2-4 assume that x; can be chosen as the center

of the inscribed ball of the simplex ai(X)' i.e. x;

v v
(28) Ixu -x| < h,

= mx, h, < p1 , and

i
where h, = Hin(pi - hilxv is a vertex of °1(x))‘ Then X is a regular perturbation

of (X,I).

This shows that conditions (25)~(27) allow perturbations of the same magnitude as the
perturbation of Example 4.

Proof. The support of each B-spline Hj, j €iAk, is the union of simplices
~ ~"0 ~"m ~7v j'\)
o, 1= o(x ,**e,x ) where |x ~-x | ¢ L l'Ai

simplices (;i) is a triangulation. To prove (25), (26) it is sufficient to show that

e By Lemma 2 the collection of

el

for any such triangulation a‘ c ;‘. We define the simplices

~10 10 “1- i-
6‘ e = g(tx + (1=t)x ,ver,tx + (1=t)x "), te [0111
¢

and cbserve that none of the (k-1)-dimensional faces of o t ¢ (0,1}, intersects

1.0

0 0
2 § This follows because any such face can be separated from i by the hyperplane

parallel to the corresponding face of c‘(X) touching 0‘ . Concerning (27) we note that

under the assumptions of the Lemma « ¢ ypi+p1-h1

Theorem 4. Let X be a regular perturbation of a triangulation (X,I). With the notation

of Theorem 3 and Definition 4 we define functionals A : c(¥") + R by

) (an'z(.z.)" u“cj(olx - 1) 0%8(1), 3 e 18k,

(29) Xj(l't)l -
jaj<k

where 1t ¢ 2 and X -1 ;= (x:-ﬂ is a translation of the point set X. Then for any set

of points tj € n‘, j € 1Ak , the functionals XJ 1= Aj(x,t

j). j € 1Ak , are dual to

the B-gppline basis for ‘k,x,x' i.e,

(30) x, LI 6”, ¢ 3.3 € 1Ak.
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We note the following immediate consequences of this result which for univariate

spline functions is due to C. de Boor [2].

(1) The B-splines Mj + 3 € IAk , are linearly independent over the set Q= U ni .
iel

(ii) For any polynomial of total degree < k, p ¢ Pk, Aj(l,r)p is constant as a function

of <t € .
To see this we observe that the polynomial gq(7) := Aj(x,T)p is constant for

T € Qi' j € iAk. This follows from (30) since by (26) and Theorem 3

(31) S, = gpan M = P .
k.!.Ilﬂi jeiak jlﬂ1 klﬂ1

Concerning (i) we note, that in contrast to the univariate case in more than one variable

the B-spline basis of S is not linearly independent over arbitrary open subsets of 2.
k

Example 5. Consider the following set of knots in ‘2

L
0

*o

which may be extended to a regular perturbation of a triangulation of R and the
corresponding piecewise linear B-splines M('lxg,xg,x:,xf), M(.ng,x;,x:,xi),

g,xf). Since also supports of other B-splines overlap the set §, {I contains

a set of linear dependence {I , i.e. the B-splines {Mjlsupp Mj n @ ¢ #)} are linearly

0 1
M(-Ixo,xo,x

dependent over g.

. = Pklﬂ‘ we have to show

Proof of Theorem 4. Since supp Xj S Q‘ , J e ik , and skln
ALl ] a, M) =a
3 Jre ik b b

f 11 1 ial a, M P .
or all polynomials j'ggAk 30 j'|Q1 € klﬂi

A change of variables in identity (19)

-19=

Cowery
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oy e —a

S X

yields
(197) (et iy=tNX = T (y=TIX-TIM, (x), x €8, .
Jte ik 3 3 i
We choose T = rj . apply the functional Aj to the left hand side and obtain
k 8 8 -1.a a
AL Gt ) (y=t ) = T (an)” D%, (01x-1 ) (y-t % .
3 18 <k 181 b laf<k 3 j b

j)

Since the set of polynomials {(1+(x>rj)(y-rj))k} o Bpans Y the proof is complete ,
yER
if we show

I (an! 1% = c (y=1,IX~1,), yeR .
la]<k 3 J 3

But this follows simply by differentiating with respect to y at y =1

(]
p%, (01%-1,) (y-,

j .
Formula (29) is only one particular representation of the dual basis for Mj, j e Ibke.

We now construct bounded extensions A, := A (X) of the functionals Aj to

3 3

Lp s dee. Aj:LP + R

(32) Ajs - Ajs r B € sk .

If we require supp A, c Ri, J € iAk, the system (32) reduces to

J
(33) Ajp - ij ¢+ P € Pk .

Hence we may determine Aj from the identities (19), (21). After a change of variables we

have

(21°) (=) = § (ul)-1(|:|)-1 o, (012-1)m, (x)
jeThk 3

and clearly, (33) is equivalent to the system

a -1, k .~1 a
(33") Aj(' t) = (al) (Ial) D cj(olx-t), lal € k «
Let La be any set of functions dual to the monomials on the unit ball B , j.e.
(34) [ 1,00 Pax =5, lal, 18] < k.

B
We transform the functions Lu to the balls Ri (c.f. Definition 4) and normalize them

in Lpn
600 =0 ™" L nT e, ))
(35)
'¢Glp',91 < C(m,k,p),
i.e. ’a represents a bounded functional on Lp(n1) + We now set

(36) A= ] a ¢
3 lafex ® @

“20-
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and determine the coefficients from (33'). Choosing T = LI j € iAk , we obtain

(37) A (s - xi)q - 2 a T/F"lﬁl

m/p L S
3 g By ILB(x)(hix) dx = a h

Islsk ® B
which implies

1k =1 =w/p-|al
i

- o
(38) a = (al) (lal) D Cj(le - xi) .

To simplify statement and proof of the theorem below we introduce the following
notation. With a space of splines sk,x,I we associate a partition g Uv = RP such that
for each j € IAk there exists a set of indices Jj such that

(39) supp M, = y U..
3 v

ver
Moreover we define

(40) J, = {3 ¢ 1Ak|8upp M, N u, * LY

3

Note, that in the univariate case (15) we may take Uv - (tv,t ) and clearly #Jj

v+1

= #Jv = k+1,

Theorem 5. Let X be a reqular perturbation of a triangulation (X,I). We define the Lp-

normalized B-spline basis for S, y y by

(p),, - £ (P) .
Mj (+ix) 6j Mj( 1x),

(p)
' 1 =1
Hj P

and assume that (c.f. (39), (40))
(42) * J,<d.

Then there exists a constant ‘s = ¢c(m,k,p,k) such that
(43) k¢ J 1agPhVPcr 3 ajH;p)l <a¥P' (] la,ByVP,
jEeIAk jeIAk p jelak
For univariate spline functions this result is due to C. de Boor [1-3] and has become
a basic tool in spline approximation. The following example shows that the assumptions of
Theorems 4,5 do not necessarily imply that the B-splines Mj, j € I8k, correspond to a

triangulation of e x 4

k




Bxample 6. Consider the following set of knots which can be extended to a regular

perturbation of a triangulation of £.

0 0 1 2
Xy = Xy = (=1,-1) Xy = (1,-1), X, = (-1,1),

1
xz - xz - (1,1), x, = (1,¢), xf = (=1,-¢)

The balls 91 can be chosen in the sets 91, 92 and the coefficient of the B-gpline

0 1 1 2
M(*lxo.xo,x1,x,) in the expansion

(16') 1z)C, M
) b I
is given by (c.f. Theorem 3)
0 0 1 1 0 0 1 1
-1 1 1 -1 -1 1 1 -1
s sgn det det =-3e.
-1 -1 -1 1 | -1 -1 € -
1 1 1 1 1 1 1 1

Hence the coefficient may vanish or become negative although the assumptions in Theorems

4,5 are satisfied. Since the B-splines are linearly independent the coefficients in (16')

are unique and therefore there cannot exist an associated triangulation of R° x A1 for

€ > 0. This is also the reason why we cannot use the coefficients cj to normalize the B-
- )

Vp Hj . &8 in the univariate case, unless we make some more
restrictive assumptions on the distribuion of the knots.

splines, {.a. H;p) = (Cj’

Proof of Theorem 5. "<" By (42) we have (c.f. (39), (40))

(p).p o/p' p . l&),p
1 a, M0 <d Tota v m .
3 3 D:Uv jfav 3 PrUv

.22~

b e TP




v and interchanging the order of summation yields

Summing this inequality with respect to

L] L]
vy a M;p)np < a?/P ) ) |aj|pIM{p)np v " aP/p T la,lP.
P JeIak ved; LR A jelpk 3
"o We use the functionals constructed above (c.f. (36), (38)) and take into account the

different normalization of the B-splines

(p) {p), -1

A 1= (8.57) L.
3 3
is uniformly bounded which implies the local estimates

K. (p)
‘ Iajl <cij ay My np'ni . Jeddk

j € Isk gives the lower estimate.

We shall show that IA;p)I

Summing this inequality with respect to

Since I¢alpl < ¢ we have by (38) '

(44) TN AT TR TR A A el LU ST P
3o . lal<k * yo

We first observe that

' (45) (G;p))-1 <cn™P',

i

3 3
To see this, consider the set of knots {xrO ,---,xrn} of the B-spline Mj. This set must
0 n

contain points ;o,.o-,;m such that ﬂi n a(io,o--,ﬁm) ¢ ¢ , since otherwise

n = . =
Qi supp Mj ¥ contradicting (25) (26) implies Sklﬂi Pklﬂi in particular

M €EP . Hence we must have , < o(;o,..-,ﬁm) since M is not smooth across the
e Tklay i 3
{m-1) dimensional faces of this simplex. We associate with Mj the simplex

5 ~ ~ ~m w1 wk
°j 1= g((x ,eo).---,(x .eo),(x ,el),--o.(x ,ek))

D | e W ot il e
)
N

3 b
where {;1,--o,;k} = {xro,-n,x : A\ {;0'."';411}. Clearly
0 ~0n ~m m
vol g, = vol ol(x .eo),---, (x ,eo),(o,e1),--°,(0,ek)) ~ hi .

3
and by Definition 1 we obtain

pa—-

- - .
IM.§ €ch n hm/p = c h.m/p
ip i i i

which implies the estimate (45).

Now consider the term DaCj(le—xi). By its definition (c.f. Theorem 3) and (22) it

is the gum of terms of the form

a m k v 4
i D[Nl b n (1+ 2"y, j
1 w1 Yo ly=0

_23_



4 where |bv|' |zvl < kh This yields the estimate

4
(46) (0%, (01x-x )| ¢ etmx) (xny )™ 01,
Combining the estimates (45), (46) we obtain

~ (47) |A;")|p, < elmx,p)™E

IL,LI_ <c , the associated "quasiinterpolant”

ip
(48) of = (Ljf\M;p)
Je TAk
reproduces polynomials of total degree < r, 1i.e.
(49) Q=p., pe€ P
Then we have
(50) 1Qf - f'p,n < (dc+1) distLp(ﬁ)(f,Pr)

NQ+ ¢} and 4 is an upper bound for #J

where § := u{supp Mjlsupp M 3

3
(40)).

Proof. Denote by p the best approximation to £ on . By (49) we have
10f~£ < 1Q(f~p)1_+ If-pi .
Q lp Q(£~p) P Pl

The first term can be estimated by (c.f. (39), (40))

L]
L) Py ] Purpt? . )m;p)|p v
e . 33, wea, p.U, P

P ) ) (p)
fe - f-pIM
'Q( P)l ] L,( p) ,

€
v J Jv v

Interchanging the order of summation we obtain by (41)

p/p’ Prg_ P (p) .p p/p’ PP
< d 7 T 1 Fie Plog My Toy <¢ T § cFue Py
] ueJ, veJ " v ) ued
supp Hj Q#6 3 3 3

/ ]
- PP E g «-:P'lt!--pl:'U 3

, L]
< a?P'aP § lf-plg g ¢ a?/P' cplf-plg ~ .
Jes M u "Tu !
")

-2l

Corollary 3. Let Sk,x,r be a space of splines not necessarily satisfying conditions

(25)-(27). Assume that for a family of bounded functionals Lstp + R, supp Lj c supp M

jI

#F  (c.f. (39),
v




(g

Corollary 3 is the essential error estimate for local approximation schemes (c.f.
[1,4] for the univariate and (18] for the tensor product case). The dual functionals
A{p) are one particular choice for Lj . But, they are merely of theoretical
importance. Efficient schemes should be based on polin* evaluation, etc. Of course, in
principal, such methods could be constructed along the same lines. In order to get a
smooth approximation the major problem, however, is to choose the knots so that the
derivatives of the B-splines are not too big. Moreover there ghould be efficient ways for
computing the values of Ljf, M’ and precise estimates for the constants involved. These
problems however exceed the scope of this paper and we give only one example illustrating
the above concept. The scheme constructed below is in the univariate case due to M. J.

Marsden and I. J. Schoenberg [20] and for two variables to T. N. T. Goodman and S. L. Lee

[15).

Example 7. Consider the following special cases of identity (19') (c.f. also Theorem 3 and

(21)) 2
1= C, M
JeIAk 3

(51) -1 3
(x-1)_ = § k ——-cj(ylx-t)w“o M, (x)

JeI bk ayv 3

and let
-1 -1 3
1= C - C .
G070 Ty S Mo

We define the approximation scheme
52 f = £ C, M
(52) Qf = § (g) ¢, My

which by (51) reproduces linear functions. If we furthermore assume

(53) c, >0 € supp M
3 ’ Ej PP M,
then Q 1is a positive linear operator and we obtain by a slight modification of Corollary
3
(54) IQE-£1_ < c(m,k) b2 |£]
o 4 2,%

where h := sup diam supp M

3

3




In the univariate case, conditions (53) are automatically satisfied. In general we

obtain from (51), if the B-splines are linearly independent,

-1 .= 23
cj T cj X ay“Fj(ylx")ly-o .

let 71 Dbe the center of supp Hj « By (46) it is therefore necessary for

that
c;1 < c (diam supp nj)"

which leads to restrictions for the distribution of the knots (c.f. Example 6).

Acknowledgement. I would like to thank Professors Carl de Boor and Sufian Y. Husseni for

many helpful discussions during the preparation of this report.
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t is shown that the span of a collection of multivariate B-splines, Sy:=
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20. Continued

supp A jc supp uj.and the condition number of the B-spline basis is estimated.

This leads to good local approximation schemes,
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